1,488 research outputs found

    Scalable Sparse Subspace Clustering by Orthogonal Matching Pursuit

    Full text link
    Subspace clustering methods based on β„“1\ell_1, β„“2\ell_2 or nuclear norm regularization have become very popular due to their simplicity, theoretical guarantees and empirical success. However, the choice of the regularizer can greatly impact both theory and practice. For instance, β„“1\ell_1 regularization is guaranteed to give a subspace-preserving affinity (i.e., there are no connections between points from different subspaces) under broad conditions (e.g., arbitrary subspaces and corrupted data). However, it requires solving a large scale convex optimization problem. On the other hand, β„“2\ell_2 and nuclear norm regularization provide efficient closed form solutions, but require very strong assumptions to guarantee a subspace-preserving affinity, e.g., independent subspaces and uncorrupted data. In this paper we study a subspace clustering method based on orthogonal matching pursuit. We show that the method is both computationally efficient and guaranteed to give a subspace-preserving affinity under broad conditions. Experiments on synthetic data verify our theoretical analysis, and applications in handwritten digit and face clustering show that our approach achieves the best trade off between accuracy and efficiency.Comment: 13 pages, 1 figure, 2 tables. Accepted to CVPR 2016 as an oral presentatio

    Provable Self-Representation Based Outlier Detection in a Union of Subspaces

    Full text link
    Many computer vision tasks involve processing large amounts of data contaminated by outliers, which need to be detected and rejected. While outlier detection methods based on robust statistics have existed for decades, only recently have methods based on sparse and low-rank representation been developed along with guarantees of correct outlier detection when the inliers lie in one or more low-dimensional subspaces. This paper proposes a new outlier detection method that combines tools from sparse representation with random walks on a graph. By exploiting the property that data points can be expressed as sparse linear combinations of each other, we obtain an asymmetric affinity matrix among data points, which we use to construct a weighted directed graph. By defining a suitable Markov Chain from this graph, we establish a connection between inliers/outliers and essential/inessential states of the Markov chain, which allows us to detect outliers by using random walks. We provide a theoretical analysis that justifies the correctness of our method under geometric and connectivity assumptions. Experimental results on image databases demonstrate its superiority with respect to state-of-the-art sparse and low-rank outlier detection methods.Comment: 16 pages. CVPR 2017 spotlight oral presentatio

    Optical isolation with nonlinear topological photonics

    Full text link
    It is shown that the concept of topological phase transitions can be used to design nonlinear photonic structures exhibiting power thresholds and discontinuities in their transmittance. This provides a novel route to devising nonlinear optical isolators. We study three representative designs: (i) a waveguide array implementing a nonlinear 1D Su-Schrieffer-Heeger (SSH) model, (ii) a waveguide array implementing a nonlinear 2D Haldane model, and (iii) a 2D lattice of coupled-ring waveguides. In the first two cases, we find a correspondence between the topological transition of the underlying linear lattice and the power threshold of the transmittance, and show that the transmission behavior is attributable to the emergence of a self-induced topological soliton. In the third case, we show that the topological transition produces a discontinuity in the transmittance curve, which can be exploited to achieve sharp jumps in the power-dependent isolation ratio.Comment: 11 pages, 7 figure

    Associated production of the heavy charged gauge boson WH{W_{H}} and a top quark at LHC

    Full text link
    In the context of topflavor seesaw model, we study the production of the heavy charged gauge boson WH{W_{H}} associated with a top quark at the LHC. Focusing on the searching channel ppβ†’tWHβ†’ttΛ‰bβ†’lΞ½jjbbbpp\rightarrow tW_H\rightarrow t\bar{t}b \rightarrow l\nu jjbbb, we carry out a full simulation of the signal and the relevant standard model backgrounds. The kinematical distributions of final states are presented. It is found that the backgrounds can be significantly suppressed by sets of kinematic cuts, and the signal of the heavy charged boson might be detected at the LHC with s=14\sqrt{s}=14 TeV. With a integrated luminosity of \LL= 100 fbβˆ’1fb^{-1}, a 8.3Οƒ8.3 \sigma signal significance can be achieved for mWH=1.6m_{W_H}=1.6 TeV.Comment: 16 pages, 6 figure

    Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering

    Full text link
    State-of-the-art subspace clustering methods are based on expressing each data point as a linear combination of other data points while regularizing the matrix of coefficients with β„“1\ell_1, β„“2\ell_2 or nuclear norms. β„“1\ell_1 regularization is guaranteed to give a subspace-preserving affinity (i.e., there are no connections between points from different subspaces) under broad theoretical conditions, but the clusters may not be connected. β„“2\ell_2 and nuclear norm regularization often improve connectivity, but give a subspace-preserving affinity only for independent subspaces. Mixed β„“1\ell_1, β„“2\ell_2 and nuclear norm regularizations offer a balance between the subspace-preserving and connectedness properties, but this comes at the cost of increased computational complexity. This paper studies the geometry of the elastic net regularizer (a mixture of the β„“1\ell_1 and β„“2\ell_2 norms) and uses it to derive a provably correct and scalable active set method for finding the optimal coefficients. Our geometric analysis also provides a theoretical justification and a geometric interpretation for the balance between the connectedness (due to β„“2\ell_2 regularization) and subspace-preserving (due to β„“1\ell_1 regularization) properties for elastic net subspace clustering. Our experiments show that the proposed active set method not only achieves state-of-the-art clustering performance, but also efficiently handles large-scale datasets.Comment: 15 pages, 6 figures, accepted to CVPR 2016 for oral presentatio
    • …
    corecore